Performance Engineer

Cerebras is developing a radically new chip and system to dramatically accelerate deep learning applications. Our system runs training and inference workloads orders of magnitude faster than contemporary machines, fundamentally changing the way ML researchers work and pursue AI innovation.

We are innovating at every level of the stack – from chip, to microcode, to power delivery and cooling, to new algorithms and network architectures at the cutting edge of ML research. Our fully-integrated system delivers unprecedented performance because it is built from the ground up for the deep learning workload.

Cerebras is building a team of exceptional people to work together on big problems. Join us!

The Team

As a Performance Engineer on our team, you will work with leaders from industry and academia at the intersection of hardware and software, to develop state-of-the-art solutions for emerging problems in AI compute.

The Role

We’re looking for an engineer to estimate and optimize end-to-end performance for the hardware, software stack, and workload of Cerebras’ new AI-optimized system.

Responsibilities include:

  • Develop models for the hardware, software stack, and workload to estimate end-to-end performance.
  • Develop tools to analyze performance and identify bottlenecks and optimization opportunities.
  • Work with the hardware and software design teams to analyze and optimize workload performance.
  • Work with design teams to implement optimizations and tune overall performance.

Skills & Qualifications

  • PhD or Master’s degree in Computer Science, Electrical Engineering, or equivalent, particularly with focuses in computer architecture.
  • Experience with performance analysis on CPUs, GPUs, and parallel architectures.
  • Experience with end-to-end workload analysis from low level assembly instruction code to high level distributed algorithms.
  • Programming/scripting experience in C/C++ and Python.


Los Altos, CA or San Diego, CA or Toronto, Canada


  • Summer Internship & New Grad / Full Time:


  • Headquarters/Los Altos Office
  • Remote Office
  • San Diego Office
  • Toronto Office

Apply for this position.


Cover Letter